В работе представлены параметрические петроупругие модели четырех различных карбонатных пород, содержащих поры и трещины в масштабе образца (модели двойной пористости). Для построения моделей использованы подходы теории эффективных сред, в частности, метод обобщенного сингулярного приближения, который учитывает связность пустотного пространства. Параметры петроупругих моделей определены в результате решения обратной задачи на основе анализа микроструктуры пород в различных масштабах, а также измерений скоростей упругих волн, проведенных по специальной методике, позволяющей разделить неоднородность и анизотропию упругих свойств пород. Использование результатов измерения проницаемости и трехосных испытаний образцов на прессе позволило сузить область неопределенности параметров моделей, получаемой в результате решения обратной задачи. Полученные петроупругие модели могут быть использованы для изучения поведения физических свойств пород в зависимости от изменения параметров, характеризующих их фильтрационно-емкостные свойства (трещинной и матричной пористости, формы пустот и степени их связности).
Материалы и методы
Метод обобщенного сингулярного приближения (ОСП), язык программирования Fortran 90, библиотека IMSL для Fortran 90.
Итоги
Построены параметрические математические модели изотропных упругих свойств четырех карбонатных пород. Модели отражают наличие в породах пустот двух типов — пор и трещин. Найденные численные значения параметров моделей характеризуют форму пор и трещин, трещинную пористость, а также степень связности пустот.
Выводы
На основе лабораторных исследований керна построены параметрические петроупругие модели четырех карбонатных пород (известняков), имеющих различное внутреннее строение и различные фильтрационно-емкостные свойства. Петроупругие модели являются моделями двойной пористости, предполагающими наличие в породах двух типов связанных между собой пустот — пор и трещин, которые имеют хаотическую ориентацию в объеме породы. Сравнение полученных параметров микроструктуры пород с ее изображениями показывает их удовлетворительное соответствие. Это, в свою очередь, свидетельствует о применимости предложенной модели двойной пористости и метода поиска параметров модели (нелинейной оптимизации с ограничениями на параметры). Найденные параметры микроструктуры пород можно использовать как для анализа влияния параметров модели на упругие свойства этих пород, так и для теоретической оценки других физических свойств, таких как коэффициент теплопроводности, электропроводности и т.д., что позволяет реализовать теория эффективных сред.